Monograph

专著

Paper

论文

2024

  1. Cui X, Wang C, Xiong Y, et al. DCB-RRT*: DYNAMIC CONSTRAINED SAMPLING BASED BIDIRECTIONAL RRT* WITH IMPROVED CONVERGENCE RATE[J].International Journal of Robotics and Automation, 2024 [link]
  2. Cui X, Wang C, Xiong Y, et al. More Quickly-RRT*: Improved Quick Rapidly-exploring Random Tree Star algorithm based on optimized sampling point with better initial solution and convergence rate[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108246. [link]

2023

  1. Z. Gao, S. Wu, Z. Wan and S. Agaian, "A Hybrid Method for Implicit Intention Inference Based on Punished-Weighted Naïve Bayes," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 1826-1836, 2023. [link]
  2. C. Zheng, W. Jia, S. Wu and Z. Li, "Neural Augmented Exposure Interpolation for Two Large-Exposure-Ratio Images," in IEEE Transactions on Consumer Electronics, vol. 69, no. 1, pp. 87-97, 2023. [link]
  3. L. Mei, Y. He, F. Fishani, Y. Yu, L. Zhang, H. Rhodin, “Learning Domain-Adaptive Landmark Detection based Self-Supervised Video Synchronization for Remote Sensing Panorama,” Remote Sensing,  vol. 15, no. 4, 2023. [link]
  4. X. Zhang, W. Yu, M. Pun, et al. “Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning,”. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 197, pp. 1-17, 2023. [link]
  5. X. Zhang, B. Zhang, W. Yu and X. Kang, "Federated Deep Learning With Prototype Matching for Object Extraction From Very-High-Resolution Remote Sensing Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-16, 2023. [link]
  6. X. Ma, X. Zhang, Z. Wang and M. -O. Pun, "Unsupervised Domain Adaptation Augmented by Mutually Boosted Attention for Semantic Segmentation of VHR Remote Sensing Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023. [link]
  7. R. Wang, L. Zeng, S. Wu, W. Cao and K. Wong, “Illumination-robust feature detection based on adaptive threshold function,” Computing, vol.105, no. 4, PP. 657–674, 2023. [link]

2022

  1. Y. Li, Z. Li, C. Zheng, S. Wu, “Adaptive weighted guided image filtering for depth enhancement in shape-from-focus,” Pattern Recognition, vol. 131, 2022. [link]
  2. Z. Li, C. Zheng, H. Shu, S. Wu, “Dual-Scale Single Image Dehazing via Neural Augmentation,” IEEE Trans. on Image Processing, vol. 31, pp. 6213-6223, 2022. [link]
  3. J. Shi, S. Sun, Z. Shi, C. Zheng, B. She, “Water Column Detection Method at Impact Point Based on Improved YOLOv4 Algorithm,” Sustainability,  vol. 14, no. 22, 2022. [link]
  4. X. Zhang, W. Yu and M. -O. Pun, "Multilevel Deformable Attention-Aggregated Networks for Change Detection in Bitemporal Remote Sensing Imagery," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022. [link]
  5. J. Wu, S. Xie, Z. Li, S. Wu, “Image noise level estimation via kurtosis test,” Electron. Imaging, vol. 31, no. 3, 2022. [link]
  6. K. Yang, S. Wu, D. N. Ghista, D. Yang, K. L. Wong, “Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI,” Computer Methods and Programs in Biomedicine, vol. 216, pp.1-12, 2022. [link]
  7. G. Deng, S. Wu, L. Zhou, W. Cao and Z Wan, “A gamma self-correction method via chord distribution coding in fringe projection profilometry,” Electronics Letters, vol.58, no. 8, pp. 315-317, 2022. [link]
  8. W. Cao, S. Wu, Z. Liu and S. Agaian, “Scale-aware guided and structure-preserved texture filter,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022. [link] [code]
  9. Z. Wan, C. Xiong, W. Chen, H. Zhang and S. Wu, “Pupil-contour-based gaze estimation with real pupil axes for head-mounted eye tracking,” IEEE Trans. Industrial Information, 18(6): 3640-3650, 2022. [link]
  10. G. Deng, S. Wu, L. Zou, W. Cao, and H. Han, "Robust gamma correction based on chord distribution coding considering projector defocusing," Appl. Opt. vol. 61, pp. 2842-2849, 2022. [link]
  11. B. Zhang, X. Zhang, M. -O. Pun and M. Liu, "Prototype-Based Clustered Federated Learning for Semantic Segmentation of Aerial Images," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, pp. 2227-2230, 2022. [link]
  12. X. Ma, X. Zhang, M. -O. Pun and M. Liu, "MSFNET: Multi-Stage Fusion Network for Semantic Segmentation of Fine-Resolution Remote Sensing Data," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, pp. 2833-2836, 2022. [link]
  13. X. Ma, X. Zhang and M. -O. Pun, "A Crossmodal Multiscale Fusion Network for Semantic Segmentation of Remote Sensing Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3463-3474, 2022. [link]
  14. Z. Lv, X. Yang, X. Zhang and J. A. Benediktsson, "Object-Based Sorted-Histogram Similarity Measurement for Detecting Land Cover Change With VHR Remote Sensing Images," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022. [link]
  15. W. Yu, X. Zhang and M. -O. Pun, "Cloud Removal in Optical Remote Sensing Imagery Using Multiscale Distortion-Aware Networks," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022. [link]

2021

  1. Z. Xu, R. He, S. Xie and S. Wu, “Adaptive rank estimate in robust principal component analysis,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp.6573-6582, 2021. [link] [code]
  2. Z. Xu, H.S. Xing, S. Fang, S. Wu, S. Xie, “Double-weighted low-rank matrix recovery based on rank estimation,” in 2021 IEEE/CVF Int. Conf. Computer Vision Workshops. pp.172-180, 2021. [link]
  3. H. Han, S. Wu, Z. Song, F Gu, J. Zhao, “3D reconstruction of the specular surface using an iterative stereoscopic deflectometry method,” Optics Express, vol.29, no.9, pp. 12867-12879, 2021. [link]
  4. C. Zheng, Z. Li, Y. Yang and S. Wu, “Single image brightening via multi-scale exposure fusion with hybrid learning,” IEEE Trans. Circuits and Systems for Video Technology , vol.31, no.4, pp.1425-1435, 2021. [link]
  5. L. Cheng, Q. Tang, Z. Zhang, S. Wu, “Data mining for fast and accurate makespan estimation in machining workshops,” Journal of Intelligent Manufacturing, vol.32, pp.483-500, 2021. [link]
  6. X. Zhang, M. -O. Pun, and M. Liu, "Semi-Supervised Multi-Temporal Deep Representation Fusion Network for Landslide Mapping from Aerial Orthophotos" Remote Sensing vol.13, no. 4: 548, 2021. [link]
  7. X. Zhang, W. Yu, M. -O. Pun and M. Liu, "Style Transformation-Based Change Detection Using Adversarial Learning with Object Boundary Constraints," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 3117-3120, 2021. [link]
  8. W. Yu, X. Zhang, M. -O. Pun and M. Liu, "A Hybrid Model-Based and Data-Driven Approach for Cloud Removal in Satellite Imagery Using Multi-Scale Distortion-Aware Networks," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 7160-7163, 2021. [link]
  9. W. Cao, S. Wu, D. Wang and J. Wu, "A high visibility and SNR image from one single-shot low-light image," IEEE Computer Graphics and Applications, vol.41, no.5, pp.124-137, 2021. [link]
  10. W. Cao, S. Wu, J. Wu, Z. Liu, Y. Li, “Edge/Structure-Preserving Texture Filter via Relative Bilateral Filtering With a Conditional Constraint,” IEEE Signal Process. Lett., vol. 28, pp.1535-1539, 2021. [link]
  11. L. Zou, H. Fang, Y. Li, S. Wu, “Roughness estimation of high-precision surfaces from line blur functions of reflective images,” Measurement, vol. 182, pp.1-9, 2021. [link]
  12. Z. Chen and S. Wu, “Low-light image enhancement and acceleration processing based on ZYNQ,” in China Automation Congress, Beijing, China, Oct. 2021. [link]
  13. W. Cao, S. Wu, R. Wang, J. Wu and G. Deng, “High SNR processing for lowlight images,” in The 4th IEEE Int. Conf. Big Data and Artificial Intelligence (BDAI), Qingdao, China, pp. 199-201, 2021. [link]
  14. C. Zheng, Z. Li, Y. Li and S. Wu, “Non-local single image de-raining without decomposition,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May, 2021. [link]

2020

  1. W. Wang, Z. Li, S. Wu and L. Zeng, “Hazy image decolorization with color contrast restoration,” IEEE Trans. Image Processing, vol. 29, no. 1, pp.1776-1787, 2020. [link]
  2. L. Mei, J. Lai, X. Xie, J. Zhu and J. Chen, “Illumination-Invariance Optical Flow Estimation Using Weighted Regularization Transform,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 2, pp. 495-508, Feb. 2020. [link]
  3. L. Mei, J. Lai, Z. Feng, X. Xie, “From pedestrian to group retrieval via siamese network and correlation,” Neurocomputing, pp.447–460, 2020. [link]
  4. C. Deng, X. Kang, Z. Zhu, S. Wu, “Behavior recognition based on category subspace in crowded videos,” IEEE Access, vol.8, pp.222599-222610, 2020. [link]
  5. Z. Wan, C. Xiong, Q. Li, W. Chen, K. Wong and S. Wu, “Accurate regression-based 3D gaze estimation using multiple mapping surfaces,” IEEE Access, vol.8, pp. 166460- 166471, 2020. [link]
  6. Y. Yang, Z. Li and S. Wu, “Exposure interpolation for two large-exposure-ratio images,” IEEE Access, vol.8, pp. 227141-227151, 2020. [link]
  7. R. Wang, L. Zeng, S. Wu, W Cao and K. Wong, “Illumination-invariant feature point detection based on neighborhood information,” Sensors, vol.20, no.22, 2020. [link]
  8. J. Jiang, Z. Li, S. Xie, S. Wu and L. Zeng, "Robust alignment of multi-exposed images with saturated regions," IEEE Access, vol. 8, pp. 221689-221699, 2020. [link]
  9. Y. Yang, Z. Li and S. Wu, “Low-light image brightening via fusing additional virtual images,” Sensors, vol. 20, no. 16, 2020. [link]
  10. X. Zhao, Y. Zhang S. Xie, Q. Qin, S. Wu and B. Luo, “Outlier detection based on residual histogram preference for geometric multi-model fitting,” Sensors, vol. 20, no. 11, 2020. [link]
  11. B. Chen and S. Wu, “Weighted aggregation for guided image filtering,” Signal, Image and Video Processing, vol.14, pp.491-498, 2020. [link]
  12. C. Zheng, Z. Li, Y. Yang and S. Wu, “Exposure interpolation via hybrid learning,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May, 2020, pp. 2098-2102. [link]

2019

  1. H. Han, S. Wu, and Z. Song, “An accurate calibration means for the phase measuring deflectometry system,” Sensors, vol. 19, no. 24, 2019. [link]
  2. Z. Y. Lv, T. F. Liu, P. Zhang, J. A. Benediktsson, T. Lei and X. Zhang, "Novel Adaptive Histogram Trend Similarity Approach for Land Cover Change Detection by Using Bitemporal Very-High-Resolution Remote Sensing Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 9554-9574, Dec. 2019. [link]
  3. X. Zhang, W. Shi, Z. Y. Lv, "Uncertainty Assessment in Multitemporal Land Use/Cover Mapping with Classification System Semantic Heterogeneity," Remote Sensing, vol. 11, no. 21, 2019. [link]
  4. X. Zhang, W. Shi, Z. Y. Lv, F. Peng, "Land Cover Change Detection from High-Resolution Remote Sensing Imagery Using Multitemporal Deep Feature Collaborative Learning and a Semi-supervised Chan–Vese Model," Remote Sensing, vol. 11, no. 23, 2019. [link]
  5. D. Wang, Y. He, Y. Liu, D. Li, S. Wu, Y. Qin, and Z. Xu, “3D object detection algorithm for panoramic images with multi-scale convolutional neural network,” IEEE Access, vol. 7, no. 1, pp. 171461-171470, 2019. [link]
  6. Z. Xu, S. Wu, Z. Yu and X. Guang, “A robust direction of arrival estimation method for uniform circular array,” Sensors, vol. 19, no. 20, 2019. [link]
  7. Y. Lu, S. Xie, S. Wu, “Exploring competitive features using deep convolutional neural network for finger vein recognition,” IEEE Access, vol. 7, pp.35113-35123, 2019. [link]
  8. C. Yang, S. Wu, H. Fang and M. J. Er, “Adaptive weber-face for illumination-robust face recognition,” Computing, vol. 101, no. 6, pp.605-619, 2019. [link]

2018

  1. Y. Lu, S. Yoon, S. Wu and D. S. Park, “Pyramid histogram of double competitive pattern for finger vein recognition,” IEEE Access, vol. 6, pp.56445-56456, 2018. [link]
  2. S. Zhou, S. Wu, H. Liu, Y. Lu and N. Hu, “Double low-rank and sparse decomposition for surface defect segmentation of steel sheet,” Applied Sciences, vol. 8 no. 9, 1628, 2018. [link]
  3. Y. Yang, W. Cao, S. Wu and Z. Li, “Multi-scale fusion of two large-exposure-ratio images,” IEEE Signal Processing Letters, vol. 25, no. 12, pp. 1885-1889, 2018. [link]
  4. W. Wang, Z. G. Li and S. Wu, “Color contrast-preserving decolorization,” IEEE Trans. Image Processing, vol. 17, no. 11, pp. 5464-5474, 2018. [link]
  5. Y. Song, S. Wu and Z. Song, “An object segmentation method based on image contour and local convexity for 3D vision guided bin-picking applications,” in Proc. Int. Conf. Real-time Computing and Robotics (RCAR), 474-478, Aug., 2018.[link]

2017

  1. Y. Ren, G. Sun, Z. Feng, M. J. Er and S. Wu, “Weighted-average ℓ1 filtering for switched positive systems,” Int. J. Robust and Nonlinear Control, vol. 27, no. 18, 5097-5112, 2017. [link]
  2. X. Sun, H. Liu, S. Wu, Z. Fang, C. Li and J. Yin, “Low-light image enhancement based on guided image filtering in gradient domain,” Int. J. Digital Multimedia Broadcasting, pp.1-13, 2017. [link]
  3. W. Xu, S. Wu, M. J. Er, C. Zheng and Y. Qiu, “A new non-negative sparse feature learning approach for content-based image retrieval,” Int. J. Digital Multimedia Broadcasting, pp.1-13, 2017. [link]
  4. Q. Zhang, S. Wu, W. Wang and Z. Fang, “Improving 2D camera calibration by LO-RANSAC,” Int. J. Information and Electronics Engineering, vol. 7, no. 3, pp.93-98, 2017. [link]
  5. Y. Lu, S. Wu, Z. Fang, N. Xiong, S. Yoon, and D. Park, “Exploring finger vein based personal authentication for secure IoT,” Future Generation Computer Systems, vol. 77, pp.149-160, 2017. [link]
  6. P. Chen, S. Wu, H. Fang and B. Chen, “Gaussian noise detection and adaptive non-local means filter,” in Proc. the 8th Pacific-Rim Symposium on Image and Video Technology (PSIVT2017), Wuhan, China, Nov. 2017. [link]
  7. H. Yu , S. Wu, Q. Lu, Y. Zhou and S. Liu, “Robust integral sliding mode controller for quadrotor flight,” in Proc. 2017 Chinese Automation Congress, Jinan, China, Oct., 2017[link]
  8. Y. Qiu, S. Wu, K. Chen and L. Zeng, “Radiometric response functions from differently illuminated images,” in Proc. IEEE conf. Industrial Electronic & Applications, Siem Reap, Cambodia, Jun., 2017.[link]
  9. W. Wang, S. Wu, Q. Zhang, K. Chen and L. Zeng, “High-visibility tone mapping by weighted guided image filter in multi-scale domain,” in Proc. IEEE conf. Industrial Electronic & Applications, S[link]
  10. Q. Zhang, H. Chen, H. Fang and S. Wu, “Illumination-robust face recognition using locally directional intensity mapping and order features,” in Proc. IEEE conf. Industrial Electronic & Applications, Siem Reap, Cambodia, Jun., 2017.[link]
  11. Q. Zhang, S. Wu, W. Wang and Z. Fang, “Improving 2D camera calibration by LO-RANSAC,” in Proc. the 6th Int. Conf. Information and Electronics Engineering (ICIEE 2017), Singapore, Feb. 2017.[link]
  12. W. Wang, S. Wu, Q. Zhang and M. Er, “Multi-scale detail-preserving tone mapping with adaptive gamma compression,” in Proc. 6th Int. Conf. Information and Electronics Engineering (ICIEE 2017), Singapore, Feb. 2017.[link]

2016

  1. S. Wu, L. Yang, W. Xu, J. Zheng, Z. Li, and Z. Fang, “A mutual local-ternary-pattern based Method for Aligning Differently Exposed Images,” Computer Vision and Image Understanding , vol. 152, pp.67-78, 2016. [link] [code]
  2. R. Venkatesan, M. Er, M. Dave, M. Pratama and S. Wu, “A novel online multi‑label classifier for high‑speed streaming data applications,” Evolving Systems, vol. 7, pp.1-13, 2016. [link]
  3. N. Li, X. Zhao, Y. Liu, D. Li and S. Wu, “Object tracking based on bit-planes,” J. Electronic Imaging, vol.25, no.1, 2016. [link]
  4. A. Elazab, Y. M. AbdulAzeemd, S. Wu and Q. Hu, “Robust kernelized local information fuzzy C-means clustering for brain magnetic resonance image segmentation,” J. X-Ray Science and Technology, vol. 24, no.3, pp. 489–507, 2016. [link]
  5. X. Yu, J. Cheng, S. Wu and W. Song, “A framework of timestamp replantation for panorama video surveillance,” Multimedia Tools and Applications, vol. 75, pp.10357-10381, 2016. [link]
  6. R. Venkatesan, M. J. Er, S. Wu and M. Pratama, “A novel online real-time classifier for multi-label data stream,” in Proc. 2016 Int. Joint Conf. Neural Networks (IJCNN) , Vancouver, Canada, 2016, pp. 1833-1640.[link]
  7. B. Chen and S. Wu, “Weighting linear matching for stereo vision,” in Proc. IEEE conf. Industrial Electronic & Applications, Hefei, China, Jun., 2016, pp.1009-1014.[link]
  8. W. H. Liu and S. Wu, “Superpixels-based non-local means image denoising,” in Proc. IEEE conf. Industrial Electronic & Applications, Hefei, China, Jun., 2016. [link]

2015

  1. F. Yuan, Z. Fang and S. Wu, Y. Yang and Y. Fang, “A real-time image smoke detection using staircase searching based dual threshold AdaBoost and dynamic analysis,” IET Image Processing, vol. 9, No. 10, pp. 849 - 856, 2015.
  2. H. Yang, S. Wu, C. Deng and W. Lin, “Scale and orientation invariant text segmentation for born-digital compound images”, IEEE Trans. Cybernetics, vol.45, no. 3, pp. 533-547, 2015. [link]
  3. Z. Li, J. Zheng, Z. Zhu, W. Yao and S. Wu, “Weighted guided image filtering,” IEEE Trans. Image Processing, vol. 24, no. 1, pp. 120-129, 2015. [link]
  4. Z. Zhu, Z. Li, S. Wu and P. Franti, “Noise reduced high dynamic range tone mapping using information content weights,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Queensland, Australia, April. 2015, pp. 1255-1259.[link]
  5. S. Wu, W. Xu, J. Jiang, Y. Qiu and L. Zeng, “A robust method for aligning large-photometric-variation and noisy images,” in Proc. 17th IEEE Int. Workshop Multimedia Signal Processing, Xiamen, China, Oct., 2015.[link]
  6. L. Peng, Y. Liu, H. Yan, N. Li and S. Wu, “An efficient shadow removing algorithm based on projection features,” in: Proc. IEEE Int. Conf. Software Engineering and Service Sciences ( ICSESS2015), Nov. 2015, pp. 977-981.[link]
  7. S. Wu, W. Wang, J. Jiang and L. Zeng, “A real and fast non-local means method for image denoising,” 2015 Int. Symp., Information Technology Convergence, Oct., Tianjin, China.[link]
  8. S. Wu, Z. Li, J. Zheng and Z. Zhu, “Exposure-robust alignment of differently exposed images,” in Proc. IEEE Int. Conf. Image Processing (ICIP), Quebec, CA, Sep., 2015 (Best 10% paper award).[link]
  9. S. Wu, Z. Li, J. Zheng and Z. Zhu, “Aligning multi-exposed images: what are the good feature and similarity measure?” in Proc. IEEE conf. Industrial Electronic & Applications, Auckland, New Zealand, Jun., 2015, pp.1959-1963.[link]
  10. Y. Qiu and S. Wu, “Contrast-based stereoscopic images dehazing,” in Proc. IEEE conf. Industrial Electronic & Applications, Auckland, New Zealand, Jun., 2015, pp. 597-602.[link]
  11. W. Liu, S. Wu, Y. Liu, Q. Wang and N. Li, “An improved HDRI acquisition algorithm based on quality measurement,” in Proc. IEEE conf. Industrial Electronic & Applications, Auckland, New Zealand, Jun., 2015, pp. 614-619.[link]
  12. F. Zhang, Y. Liu, S. Wu and W. Liu, “Fusion of global and local tone mapping for high-dynamic range images,” in Proc. 2015 Int. Conf. Information and Communications Technologies, April, Xi’an, 2015.[link]

2014

  1. Z. Li, J. Zheng, Z. Zhu and S. Wu, “Selectively detail-enhanced fusion of differently exposed images with moving objects,” IEEE Trans. Image Processing, vol. 23, no. 10, pp. 4372-4382, 2014. [link]
  2. S. Wu, Z. Li, J. Zheng and Z. Zhu, “Exposure-robust alignment of differently exposed images,” IEEE Signal Processing Letters, vol. 21, no.7, pp. 885-889, 2014. [link] [code]
  3. L. Dong, W. Lin, Y. Fang, S. Wu and H. Seah, “Saliency detection in computer rendered images based on object-level contrast,” J. Visual Communication & Image Representation, vol. 25, pp. 525-533, 2014. [link]

2013

  1. J. Zheng, Z. Li, Z. Zhu, S. Wu, and S. Rahardja, “Hybrid patching for a differently exposed image sequence with moving objects,” IEEE Trans. Image Processing, vol. 22, no. 12, pp. 5190-5201, 2013. [link]
  2. L. Dong, W. Lin, Y. Fang, S. Wu and H. Seah, “Detection of salient objects in computer synthesized images based on object-level contrast,” in IEEE Conf. Visual Communication & Image Representation, Nov. Malaysia, 2013.[link]
  3. J. Zheng, Z. Li, S. Wu, Z. J. Zhu, W. Yao and S. Rahardja, “Perceptual final detail extraction from a vector field,” in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), July, California, USA, 2013.[link]
  4. Z. Li, J. Zheng, Z. Zhu, W. Yao, S. Wu and S. Rahardja, “Perceptually weighted bilateral filtering,” in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), July, California, USA, 2013.[link]
  5. Z. Li, J. Zheng, Z. Zhu, W. Yao, S. Wu and S. Rahardja, “Content adaptive bilateral filtering,” in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), July, California, USA, 2013.[link]

2012

  1. Z. Li, S. Wu, Z. Zhu, S. Xie and S. Rahardja, “Anti-ghost of differently exposed images with moving objects,” in Proc. Int. Conf. Image Processing. Florida, USA, Sep, 2012, pp. 2745-2748.[link]
  2. C. Childs, M. Zu, A. Wai, Y. Tsai, S. Wu and W Li, “Infra-red thermal imaging of the inner canthus: correlates with the temperature of the injured human brain,” in Proc. 2012 world Congress on Engineering and Technology, Wuhan, China, 2012, pp. 53-56.[link]
  3. J. Zheng, Z. Li, Z. Zhu, S. Wu and S. Rahardja, “Patching of moving objects for ghosting-free HDR synthesis,” in Proc. ACM Siggraph, 2012. [link]
  4. S. Wu, S. Xie and Z. Li, “An edge-based method for aligning differently exposed images,” in Proc. IEEE conf. Industrial Electronic & Applications, Singapore, June. 2012, pp.800-805.[link]
  5. Z. Li, Z. Zhu, J. Zheng and S. Wu, “Fast correction of moving regions for differently exposed images with moving objects,” in Proc. IEEE conf. Industrial Electronic & Applications, Singapore, June. 2012.[link]
  6. Z. Li, J. Zheng, Z. Zhu, S. Wu and S. Rahardja, “A bilateral filter in gradient domain,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Japan, Mar., 2012, 1113-1116.[link]

2010

  1. S. Wu, Z. Li, S. Xie and S. Rahardja, “Change detection using comparagram of images under varying illumination,” Electronics Letters, vol.64, no.12, pp.832-834, 2010. [link] [code]
  2. Z. Li, Z. Zhu, S. Wu and S. Rahardja, “Fast patching of moving regions for high dynamic range imaging,” in Proc. ACM Siggraph Asia, Seoul, Korea, Dec., 2010, poster (acceptance rate < 20%).[link]
  3. Z. Xie, S. Wu, C. He, Z. Fang, J. Yang, “Infrared face recognition based on blood perfusion using bio-heat transfer model,” in Proc. 2010 Chinese Conference on Pattern Recognition (CCPR’10) , 2010, pp. 239-242.[link]
  4. Y. Lu, Z. Xie, Z. Fang, J. Yang, S. Wu and F. Li, “Time-lapse data oriented infrared face recognition method using block-PCA,” in Proc. Int. Conf. on Multimedia Technology (ICMT), Ningbo, China. Oct., 2010, pp. 1-5.[link]
  5. S. Wu, S. Xie, S. Rahardja and Z. Li, “A robust and fast anti−ghosting algorithm for high dynamic range imaging,” in Proc. IEEE 17th Int. Conf. Image Processing (ICIP), Hong Kong, Sep., 2010, pp. 397-400.[link] [code]
  6. Z. Li, S. Rahardja, Z. Zhu, S. Xie and S. Wu, “Movement detection for the synthesis of high dynamic range images,” in Proc. IEEE 17th Int. Conf. Image Processing (ICIP), Hong Kong, Sep., 2010, pp. 3133-3136.[link]
  7. Z. Li, S. Rahardja, S. Wu, Z. Zhu and S. Xie, “Robust movement detection based on a new similarity index for HDR imaging,” in Proc. ACM Siggraph, Los Angeles, Jul., 2010.[link]
  8. Z. Zhu, S. Wu, S. Rahardja and P. Fränti, “Real-time ghost removal for composing high dynamic range images,” in Proc. IEEE conf. Industrial Electronic & Applications, Taiwan, Jun., 2010, pp. 1627-1631.[link]
  9. Z. Xie, G. Liu, S. Wu, Z. Fang and Y. Gan “A novel infrared face recognition method in DCT domain,” in Proc. Int. Conf. Wavelet Analysis and Pattern Recognition (ICWAPR), 2010, pp. 12-16.[link]
  10. E. Ong, S. Wu, M. Loke, “In-service video quality monitoring,” in Proc. 2010 IEEE Int. Symp. Circuits & Systems (ISCAS), Paris, May 2010, pp. 3381-3384.[link]
  11. Z. Li, Z. Zhu, S. Xie, S. Wu and S. Rahardja, “Robust generation of high dynamic range images,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Dallas, TX, Mar., 2010, pp. 1038-1041.[link]

2009

  1. S. Wu, W. Lin, S. Xie, Z. Lu, E. Ong and S. Yao, “Blind blur assessment for vision-based applications,” J. Visual Communication & Image Representation, vol.20, no.4, pp.231–241, 2009. [link] [code]
  2. S. Wu and S. Xie, “An efficient blind method for image quality measurement,” in Proc. 7th Int. Conf. Information, Communications & Signal Processing (ICICS 2009), Macau, Dec., 2009, pp.1-5.[link]
  3. Z.. Xie, S. Wu, G. Liu, Z. Fang, “Infrared face recognition based on radiant energy and curvelet transformation,” in Proc. 5th Int. Conf. Information Assurance and Security, Xi'An, China, Aug., 2009, pp.215-218. [link]
  4. Z. Xie, S. Wu, G. Liu, Z. Fang, “Infrared face recognition method based on blood perfusion image and curvelet transformation,” in Proc. 2009 Int. Conf. Wavelet Analysis & Pattern Recognition, Hebei, China,2009, pp.360-364.[link]
  5. Z. Xie, G. Liu, S. Wu and Y. Lu,“A fast infrared face recognition system using curvelet transformation,” in Proc. 2th Int. Symp. Electronic Commerce and Security, Nanchang, China, May, 2009, pp. 145-149.[link]
  6. Z. Xie, G. Liu, S. Wu, Z. Fang, “Infrared face recognition based on blood perfusion and fisher linear discrimination analysis,” in Proc. 2009 IEEE Int. Workshop on Imaging Systems and Techniques, Shengzhen, China, May, 2009, pp. 85-88.[link]
  7. S. Wu, W. Liang, Z. Fang, Z. Xie, “Infrared face recognition based on blood perfusion model PCA and fisher training,” in Proc. Int. Symp. Image Analysis and Signal Processing (IASP2009), Taizhou, 2009, pp.103-107.[link]
  8. E. Ong, S. Wu, M. Loke, S. Rahardja, J. Tay, C. Tan and L. Huang, “Video quality monitoring of streamed videos,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Taipei, Apr., 2009, pp.1153-1156.[link]

2008

  1. S. Wu, W. Lin and S. Xie, “Skin heat transfer model of facial thermograms and its application inface recognition,” Pat. Recog. vol.41, no.8, pp.2718-2729, 2008. [link] [code]
  2. S. Wu and W. Lin, “Defocus estimation from a single image,” in Proc. 17th Int. Conf. Computer Communications and Networks (ICCCN), Virgin Islands, US, Aug., 2008, pp. 1-5.[link]

2007

  1. S. Wu, Z. Gu, K. Chia and S. Ong, “Infrared facial recognition using modified blood perfusion,” in Proc. 6th Int. Conf. Information, Communications & Signal Processing (ICICS 2007), Singapore, Dec., 2007, pp. 1-5.[link] [code]
  2. S. Wu, L. Wei, Z. Fang, R. Li, X. Ye, “Infrared face recognition based on blood perfusion and sub-block DCT in wavelet domain,” in Proc. Int. Conf. Wavelet Analysis & Pattern Recognition, vol.3(2-4), Beijing, China, Nov., 2007, pp.1252-1256.[link]
  3. S. Yao, W. Lin, Z. Lu, E. Ong, M. Locke and S. Wu, “Image quality measure using curvature similarity,” in Proc. Int. Conf. Image Processing. Texas, USA, Sep, 2007, pp. III-437-440.[link]
  4. S. Wu, Z. Lu, E. Ong and W. Lin, “Blind image blur identification in cepstrum domain,” in Proc. 16th Int. Conf. Computer Communications and Networks (ICCCN), Hawaii, Aug., 2007, pp. 1166-1171.[link] [code]
  5. S. Wu, W. Lin, Z. Lu, E. Ong and S. Yao, “Blind blur assessment for vision-based applications,” in Proc Int. Conf. Multimedia and Expo (ICME), Beijing, Jul., 2007, pp.1639-1642.[link]
  6. Z. Lu, J. Zheng, S. Wu, W. Lin and S. Rahardja, “An adaptive deblocking filter for ROI-based scalable video coding,” in Proc. IEEE. Int. Conf. Multimedia and Expo (ICME), Beijing, Jul., 2007, pp.1639-1642. [link]
  7. Z. Lu, W. Lin, E. Ong, S. Yao, S. Wu, B. Seng and S. Kato, “Content-based quality evaluation on frame-dropped and blurred video,” in Proc Int. Conf. Multimedia and Expo (ICME), Beijing, Jul., 2007, pp.1455-1458.[link]
  8. L. Jiang, X. Liu, S. Wu and J. Leng, “Gray scale projection based infrared facial image analysis for identity verification,” in Proc. 2th IEEE Conf. Industrial Electronics & Application, Harbin, China, May, 2007, pp.1818-1822. [link]

2006

  1. Z. Wan, Z. Wang, Z. Fang, W. Zeng and S. Wu, “An efficient multicast mechanism for mobile iPv6 networks,” in Proc. Global Mobile Congress (GMC’06), Beijing, China, Oct., 2006.[link]
  2. Z. Wang, Q. Xue, W. Zeng, Z. Fang, A. Liu, Y. Xia and S. Wu, “Fast algorithm for sub-pixel motion estimation using parabola model for H.264/MPEG4 AVC,” in Proc. Int. Conf. Wireless Communications, Networking & Mobile Computing, Wuhan, China, Sept., 2006, pp. 1-4. [link]
  3. Z. Fang, S. Wang, S. Xu, S. Wu, Z. Wang and W. Zeng, “Multiwavelet video compression based on block motion compensation,” in Proc. Int. Compu. Conf. Wavelet Active Media Technology and Information Processing, Chongqing, China, Aug., 2006, pp. 847-853.[link]
  4. Z. Fang, S. Xu, S. Wu, Z. Wang and W. Zeng, “SVD based multi-watermark method in multiwavelet domain,” in Proc. Int. Compu. Conf. Wavelet Active Media Technology and Information Processing, Chongqing, China, Aug., 2006, pp. 807-812.[link]
  5. W. Zeng, Z. Wang, Z. Fang and S. Wu, “One novel subspace-based method for MRS signal parameter estimation,” in Proc. 6th World Congress on Intelligent Control & Automation, Dalian, China, Jun., 2006, pp. 1520 -1523.[link]
  6. W. Chen, M. Er and S. Wu, “Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain,” IEEE Trans Syst, Man, Cybern. Part B. vol. 36, no.2, pp. 458-466, 2006. [link] [code]
  7. S. Wu, L. Jiang, S. Xie and A. Yeo, “A robust method for detecting facial orientation in infrared images,” Pat. Recog. vol. 39, pp. 303-309, 2006. [link] [code]

2005

  1. W. Chen, M. Er and S. Wu, “PCA and LDA in DCT domain,” Patt. Recog. Lett. vol. 26, no.15, pp. 2474-2482, 2005. [link]
  2. L. Jiang, E. Ng, A C. Yeo,S. Wu, F. Pan, W. Yau, J. Chen and Y. Yang, “A perspective on medical infrared imaging,” J. Med. Eng. & Tech., vol.29, no.6, pp. 257-267, 2005. [link]
  3. M. Er, W. Chen and S. Wu, “High-speed face recognition based on discrete cosine transform and RBF neural networks,” IEEE Trans. Neural Networks, vol. 16, no.3, pp. 679-691, 2005. [link]
  4. M. Er, W. Chen and S. Wu, “High-speed face recognition based on discrete cosine transform and RBF neural networks,” IEEE Trans. Neural Networks, vol. 16, no.3, pp. 679-691, 2005. [link]
  5. S. Wu, W. Lin, L. Jiang, W. Xiong, L. Chen and S. Ong, “An objective out-of-focus blur measurement,” in Proc. 5th Int. Conf. Information, Communications & Signal Processing (ICICS 2005), Bangkok, Thailand, Dec., 2005, pp.334-338.[link]
  6. L. Jiang, S. Wu, F. Pan, D. Wu, F. Tian and E. Ng , S. Ranganath and X. Liu, “View synthesis from infrared-visual fused 3D model for face recognition,” in Proc. 5th Int. Conf. Information, Communications & Signal Processing (ICICS 2005), Bangkok, Thailand, Dec., 2005, pp.177-180.[link]
  7. Z. Fang, S. Xu, C. Wan, S. Wu, Z. Wang and W. Zeng, “Joint source-channel coding for MPEG-4 streams transmission over 3G networks,” in Proc. Int. Conf. Wireless Communication Networking & Mobile Computing, Wuhan China, vol. 2, pp. 1261-1264, 2005. [link]
  8. L. Jiang, S. Wu, F. Pan, X. Liu, D. Wu, J. Chen and O. San, “Infrared facial image analysis based on gray scale projection for identity verification,” in Proc. Int. Workshop Intelligent Information Hiding and Multimedia Signal Processing ( IIHMSP2005 ), Melbourne, Australia, 2005.
  9. S. Wu, W, Song, L. Jiang, S. Xie, F. Pan, Y. Y and S. Ranganath, “Infrared face recognition by using blood perfusion data,” in Proc. Audio- and Video-based Biometric Person Authentication, NY, pp.320-328, 2005. [link] [code]
  10. Z. Wang, Y. Fang, S. Wu, “Enterprise information fusion (EIF): concept, model and description,” in Proc. Int. Conf. Industrial Engineering and Engineering Management (IEEM'2005), Shenyang, China, pp. 23-35, 2005.

2004

  1. W. Chen, M. Er and S. Wu, “Illumination compensation and normalization using logarithm and discrete cosine transform,” in Proc. Int. Conf. Control Automation Robotics and Vision, (ICARV) Kunming, China, pp.380-385, 2004. [link]
  2. L. Jiang, A. Yeo, J. Nursalim, S. Wu, X. Jiang, Z. Lu, “Frontal infrared human face Detection by distance from centroid method,” in Proc. IEEE Int. Symp. Intelligent Multimedia, Video & Speech Processing (ISIMP), Hong Kong, pp. 41-44, 2004. [link]
  3. L. Jiang, F. Tian , L. Shen , S. Wu, S. Yao, Z. Lu and L. Xu, “ Perceptual-based fusion of iR and visual images for human detection,” in Proc. IEEE Int. Symp. Intelligent Multimedia, Video & Speech Processing (ISIMP), Hong Kong, pp. 514-517, 2004. [link]
  4. L. Jiang, F. Tian , L. Shen , S. Wu, S. Yao, Z. Lu and L. Xu, “ Perceptual-based fusion of iR and visual images for human detection,” in Proc. IEEE Int. Symp. Intelligent Multimedia, Video & Speech Processing (ISIMP), Hong Kong, pp. 514-517, 2004. [link]

2003

  1. S. Wu, L. Jiang, L. Cheng, D. Wu, S. Wu, S. Xie and A. Yeo, “RIFARS: a real-time infrared face recognition system,” in Proc. Asian Biometrics Workshop, Singapore, pp.1-6, Nov. 2003. [link]
  2. L. Jiang, S. Wu, D. Wu, H. Eng, A.Yeo and S. Zhu, “Head modeling using color unequal phase stepping method,” in Proc. Int. Conf. Image, Analysis & Processing, Mantova, Italy, pp. 94-98, Sept. 2003. [link]
  3. L. Jiang, S. Wu, D. Wu, E. Ong and S. Rahardja, “3D shape modeling by color phase stepping light projection,” in Proc Int. Conf. Multimedia and Expo (ICME), USA, vol. 2, pp. 97-100, July, 2003. [link]
  4. L. Jiang, S. Wu, D. Wu, F. Pan, E. Ong and X. Yang, “IR face synthesis using motion vector field,” in Proc. IEEE Int. Symposium Signal Processing and Its Application (ISSPA2003), France, pp. 445-448, June, 2003. [link]
  5. L. Jiang, G. Chen, S. Wu and S. Rahardia, “Hybrid transmitter design for infrared wireless link,” in Proc. Int Conf. Communication Technology, Beijing, China, Vol.1, pp. 562-564, April, 2003. [link]
  6. W. Chen, M. Er and S. Wu, “Face recognition using a high-speed RBF neural networks classifier,” in Proc. 3th Asian Conf. Industrial Automation and Robotics, Bangkok, Thailand, 2003. [link]

2002

  1. L. Jiang, N. Lee, S. Wu and R. Susanto, “Multi-channel receiver module for IR wireless link,” in Proc. WSEAS Int. Conf. Electronics, Control & Signal Processing, Singapore, Dec., 2002. [link]
  2. M. Er, S. Wu, J. Lu and H. Toh, “Face recognition using radial basis function (RBF) neural networks," IEEE Trans. Neural Networks vol.13, no.3, pp.697-710, May 2002. [link] [code]
  3. M. Er, and S. Wu, “A fast learning algorithm for parsimonious fuzzy neural systems,” Fuzzy Sets and Systems, vol.126, no.3, pp.337-351, 2002. [link]

Before 2001

  1. S. Wu, M. Er and Y. Gao, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Trans. Fuzzy Systems, vol.9, no.4, pp.578-594, 2001. [link]
  2. S. Wu and M. Er, “Dynamic fuzzy neural networks: a novel approach to function approximation,” IEEE Trans Syst, Man, Cybern. Part B. vol. 30, no.2, pp. 358-364, 2000. [link] [code]
  3. M. Er and S. Wu, “Dynamic fuzzy neural networks: principles, algorithms and applications,” (Keynote address) in Proc. IEEE Int. Joint Conf. Neural Networks, Italy, 2000. [link]
  4. S. Wu, M. Er, M. Ni and W. Leithead, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” in Proc. 2000 American Control Conference, Chicago, Illinois, USA, pp. 2453-2457, 2000. [link] [code]
  5. M. Er and S. Wu, “A new spproach towards sdaptive learning for dynamic fuzzy neural networks,” IES Journal. vol. 39, pp.5-14, 1999.
  6. M. Er, S. Wu and J. Lu, “Face Recognition Using Radial Basis Function (RBF) Neural Networks,” in Proc of 38th IEEE conf. Decision and Control, Phoenix, Arizona, USA, pp. 2162-2167, 1999. [link]
  7. MM. Er, W. Wong and S. Wu, “A Comparative Study of Different Methods for Realizing DFNN Algorithm,” in Proc of 38th IEEE conf. Decision and Control, Phoenix, Arizona, USA, pp. 2641-2642, 1999. [link]
  8. S. Wu, J. Lu and M. Er, “A Hybrid Learning Approach for Face Recognition with Radial Basis Function (RBF) Neural Networks,” in Proc. 2th Int. Conf. Information, Communications & Signal Processing, Singapore, 1999. [link]
  9. S. Wu and M. Er, “A Fast Learning Algorithm for Parsimonious Fuzzy Neural Systems,” in Proc. of 5th European Control Conference. Karlsruhe, Germany, 1999. [link]
  10. M. Er, S. Chang, C. Huang, and S. Wu, “Non-contact coordinate measurements for robotic manipulators using laser tracking systems,” in Proc. of 5th European Control Conference. Karlsruhe, Germany, 1999. [link]
  11. S. Wu, M. Er and J. Liao, “A novel learning algorithm for dynamic fuzzy neural networks,” in Proc. 1999 American Control Conference. San Diego, CA, USA, pp. 2310-2314, 1999.

Patent

国际专利

  1. [1] Z. Li, J. Zheng, Z. Zhu, S. Wu, W. Yao, and S. Rahardja, Method and system for processing an input image based on a guided image and weights determined thereform, US 9754356, Date of patent: 5 Sept. 2017.
  2. [2] Z. Li, J. Zheng, Z. Zhu, S. Wu, W Yao and S. Rahardja, Method and system for processing an input image, US2016/0292824A1, Publication date: 6 Oct. 2016.
  3. [3] Z. Li, J. Zheng, Z. Zhu, S. Wu, and S. Rahardja, Method and device for image processing, US9466007, Date of patent: 11 Oct. 2016.
  4. [4] Z. Li, J. Zheng, Z. Zhu, S. Wu, and S. Rahardja, Method and device for image processing, US9305372, Date of patent: 5 Apr. 2016.
  5. [5] S. Wu, S. Rahardja and Z. Li, A method and device for aligning a plurality of digital pictures, US9129413. Date of patent: 8 Sep. 2015.
  6. [6] Z. Li, J. Zheng, Z. Zhu, S. Wu, W Yao and S. Rahardja, Method and system for processing an input image, PCT patent, WO2014168587, Publication date: Oct. 16, 2014.
  7. [7] Z. Li, J. Zheng, Z. Zhu, S. Wu, and S. Rahardja, Method and device for image processing, PCT patent, WO2013109192. Publication date: July 25 2013.
  8. [8] Z. Li, Z. Zhu, S. Wu, S. Xie and S. Rahardja, Method and device for image processing, PCT patent, WO/2012/015359. Publication Date: Feb. 2 2012.
  9. [9] Z. Li, J. Zheng, Z. Zhu, S. Wu and S. Rahardja, Bilateral and trilateral filters in gradient domain, Singapore patent, No. SG 2012-00405-7.
  10. [10] S. Wu and S. Rahardja, A fast and accurate method for alignment of differently exposed images, Singapore patent, No. SG 2011-05851-8.